The deep venous system and reverse flow flaps

F. del Pinal and G. I. Taylor

The Department of Anatomy, University of Melbourne, and The Department of Surgical Research, The Royal Melbourne Hospital, Melbourne, Australia

SUMMARY. The deep venous system of the upper and lower extremities was injected with a lead oxide mixture in 2 fresh human cadavers, dissected, radiographed and the sites of the venous valves located.

These studies confirmed that the macrovenous connections between the venae comitantes of the distributing arteries were insufficient in number to bypass the venous valves in conventional, distally based reverse flow flaps (e.g. radial, ulnar, peroneal) but revealed an alternative microvenous interconnecting pathway which surrounds the artery as the venae arteriosa.

This pathway was investigated in a series of distally based reverse flow saphenous flaps in dogs, comparing flaps where the microvenous connections were left intact (non-skeletonised) with those where these vessels were disconnected with the operating microscope (skeletonised). All non-skeletonised flaps survived subtotally or totally whereas total necrosis was observed in 70% of the skeletonised flaps.

Finally a series of haemodynamic studies was performed to test valve competency including extrinsic pressure on the valves. It is concluded that the macrovenous and microvenous pathways, coupled with the variable anatomy of the venous valves, are major factors in determining the survival of reverse flow flaps.

Since Biemer and Stock1 introduced "the distally based flap" where flow was reversed against the venous valves, the technique has become popular, especially in the reconstruction of defects in the distal limb. The flaps may be raised as an island flap on a stalk of deep vessels or on a skin and subcutaneous pedicle, based on perforators of the deep arteriovenous system. With increasing frequency, new flaps are appearing in the literature which are designed in this way.

By definition, these flaps impose a retrograde venous flow against the anatomical obstruction of the valves. Although they are usually based distally in the body, the terms "distally based" and "reverse flow" are not necessarily synonymous, as there are many situations where venous valves direct blood away from the heart and towards the periphery, for example, the superficial and deep inferior epigastric veins and some of the tributaries of the cutaneous perforators as they converge on a central pedicle.2

The arterial inflow to the flap is easy to comprehend since the arterial framework of the body is a continuous unbroken network of vessels which interconnect by true or choke anastomoses to link with the artery at the base of the flap.3 The precise mechanism of the venous return from the flap however still remains unresolved, although there have been many theories. Obviously, the venous valves must become regurgitant or be bypassed by collaterals since most flaps survive without infarction.

Lin and co-workers1 suggested that the venous return "skips" between the venae comitantes of the artery, across the interconnecting stepladder of communicating veins, to bypass the valves. These connecting veins are very evident in the deep venous system, especially in the limbs, and range from 1 mm up to 3 mm in diameter or more in some cases. We will refer to them as Macrovenous connections.

In the same year Timmons4 suggested an alternative mechanism and postulated three prerequisites for valve incompetence to allow regurgitant flow

(i) There should be venous blood on both sides of the valve
(ii) The venous pressure proximal (downstream) to the valve should be higher than distal (upstream)
(iii) The valve should be denervated.

Finally Torii and co-workers5 published their work. They postulated that there is reflux of blood between the valve cusps if there is a change in the valve axis, if there is loss of tension in the pedicle of the flap and a high pressure in the proximal pole of the valve.

Although some of the suggestions in each of the three theories are plausible none explains the entire picture as there are certain inconsistencies. Timmons' and Satoh and co-workers6 showed that anatomically there were too many valves in the radial pedicle and relatively too few macroconnections between the venae comitantes to allow reverse venous flow without encountering the mechanical obstruction of one or more valves, unless the pedicle was short. Torii and co-workers6 expanded the studies to encompass other veins in the limbs and obtained comparable results.

A similar criticism can be made about denervation of the valves and the other criteria suggested by Timmons. A free flap or a vein graft containing valves
The deep neurovascular systems were dissected from each limb. In doing so veins draining muscles were identified with metal staples and black silk ties were used for those veins draining bones or joints. The specimen was radiographed (Fig. 1) and then each vein was dissected under magnification (6× to 40×) to identify the site and orientation of the valves. A tracing was made of each specimen and the veins were color coded according to the presence (blue) or absence (yellow) of valves (Fig. 2). The study was extremely time consuming and averaged 100 hours per limb. It was completed in 1989.

Results

This study was most rewarding. In addition to confirming published anatomical data of other workers it revealed several new findings. Perhaps the most significant of these was the identification of a rich plexus of fine veins, free of valves, which surrounded the artery as the vena arthropia and provided a rich interconnection between the accompanying venae comitantes (Fig. 3). This plexus of tiny veins provided not only a transverse pathway between the venae comitantes, but also a longitudinal avenue to bypass valves in the comitant veins. We will refer to them as **Microvenous connections** to distinguish them from their larger counterparts (side supra). They have been mentioned already in our description of the various pathways of the venous drainage of peripheral nerves. This was a constant finding in every situation where an artery was accompanied by venae comitantes. In either the upper or the lower limb, the only difference being the density and disposition of these fine venous radicles.

Their diameters were less than 1 mm and most were between 0.1 and 0.3 mm. Our other findings were as follows:

1) Numerous valves were found in the deep venous system of the upper as well as the lower limbs. Except for two unicuspid and one tricuspid they were all of the bicuspid variety. Although more valves were identified in the lower limb the average number of valves per unit length, excluding those identified in collateral channels, was almost identical to that located in the deep venae comitantes of the upper extremity (Table 1). In other words there are more valves in the lower limb because the venous channels are longer.

2) A large number of avalvular (oscillating or bidirectional) veins were identified as noted in our previous work which we have once again colour coded yellow (Fig. 2). Typically the macrovenous (as well as the microvenous) connections between venae comitantes were of this avalvular variety. In addition avalvular collateral vein segments were noted in many places which coursed parallel to, and bypassed valve segments in the main venous channels. Although the avalvular macrovenous connections and collateral vein “detours” reduced the number of valves to be overcome, they did not provide a pathway free of valves to allow in most cases the design of an unobstructed reverse flow flap (Tables 2 and 3).

3) In many instances venous valves were noted which directed flow distally in the limb. Typically this occurred at the distal end of an arcade whose “keystone” was a bidirectional or oscillating vein segment or plexus of veins and where the valves in the proximal end of the arch were
Figure 2 - Diagrams to correspond with Figure 1. Valved veins are coloured blue and avascular veins yellow. Valve sites (dots and circles) and direction of flow (arrows) are indicated.
Table 1 Valve density and average intervacular distance in the upper and lower extremities of the two cadavers C1 and C2. All values in a given venous pedicle have been included irrespective of the number of venae comitantes in a given segment. Valves belonging to collateral veins have been excluded.

<table>
<thead>
<tr>
<th>Pedicle</th>
<th>Length in cm</th>
<th>Number of valves</th>
<th>Intervascular distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>Anterior tibial</td>
<td>37</td>
<td>37</td>
<td>53</td>
</tr>
<tr>
<td>Posterior tibial</td>
<td>30</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Peroneal</td>
<td>21</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Radial</td>
<td>10</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Ulnar</td>
<td>16</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Anterior interosseus</td>
<td>13</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Posterior interosseus</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2 Maximum unobstructed distance between valves allowing for collateral veins and macroconnections between venae comitantes in cadavers C1 and C2.

<table>
<thead>
<tr>
<th></th>
<th>Length in cm</th>
<th>Number of valves</th>
<th>Maximal intervacular distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>Right anterior tibial</td>
<td>39</td>
<td>37</td>
<td>19</td>
</tr>
<tr>
<td>Left anterior tibial</td>
<td>39</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>Right posterior tibial</td>
<td>30</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>Left posterior tibial</td>
<td>30</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Right peroneal</td>
<td>21</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Left peroneal</td>
<td>21</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Right radial</td>
<td>10</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Left radial</td>
<td>10</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Right ulnar</td>
<td>16</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Left ulnar</td>
<td>16</td>
<td>17</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3 Number of valves obstructing reverse flow for different pedicle lengths of commonly used distally based flaps allowing for bypass macroconnections between the venae comitantes. Valves in the radial and ulnar recurrent veins direct flow distally and hence are represented with a negative sign.

<table>
<thead>
<tr>
<th>Pedicle length</th>
<th>Number of obstructing valves to reverse venous flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 cm</td>
<td></td>
</tr>
<tr>
<td>Anterior tibial</td>
<td>5 4 3 3</td>
</tr>
<tr>
<td>Posterior tibial</td>
<td>8 5 2 4</td>
</tr>
<tr>
<td>Peroneal</td>
<td>2 5 3 2</td>
</tr>
<tr>
<td>Radial</td>
<td>1 3 0 0</td>
</tr>
<tr>
<td>Ulnar</td>
<td>4 6 1 2</td>
</tr>
<tr>
<td>Posterior interosseus</td>
<td>3 2 2 1</td>
</tr>
<tr>
<td>Radial recurrent</td>
<td>(-1) 0 (-1) 0</td>
</tr>
<tr>
<td>Ulnar recurrent</td>
<td>(-1) (-2) (-1) (-2) (-1) (-2)</td>
</tr>
</tbody>
</table>

Canine experiments

Based on the knowledge that in the human the macrovenous connections and collaterals were insufficient to bypass the mechanical obstruction of the valves in most reversed flow flaps, we decided to investigate the part played by the microvenous connections. We chose the dog saphenous arteriovenous system since we were familiar with its anatomy following our vascularised nerve experiments as well as the fact that a proximally based island skin flap had been described by Banis and co-workers. We decided therefore to design a distally based island flap and to compare the survival of skin flaps where the perivasal microvenous connections were left intact (non skeletonised) with those in which this microvenous system was interrupted (skeletonised).

Before this could be done we had to define the anatomy of this new island flap model, to design the experiment and to eliminate spasm as a possible explanation for flap failure. Therefore several initial experiments were conducted.
Figure 4 (Left) Fresh cadaver lead oxide arterial injection and dissection of the dog hind limb showing (1) the saphenous vessels, (2) the saphenous flap, (3) dorsal division of the saphenous system, (4) plantar division of the saphenous system which was used as the pedicle for the reverse flow flap and (5) its peroneal branches. (Right) Island flap removed for radiology and valve mapping. The tibial nerve (6) which courses with the future flap pedicle is evident.

Figure 5 Arteriogram (left) and valve map (right) of the specimen in Figure 4 labelled to match.
Preliminary Studies

First a total body fresh cadaver injection study was performed in the dog in which the arteries were injected with a radioopaque lead oxide mixture and a simultaneous injection of the venous system was performed with a radiolucent dye. This allowed us to dissect and locate the valves in the veins of the hind limb of the dog, to remove the proposed flap and to X-ray it in order to locate the site and pattern of supply of the cutaneous arterial perforators.

The saphenous arteriovenous system divides just proximal to the knee into a small dorsal and a large ventral (plantar) system (Fig. 4). The latter was chosen as the pedicle for the distally based skin flap since the venae comitantes were more proportional to their accompanying plantar artery, there were more valves in the system and since the calibre of the dorsal artery was very small and it was feared that it would be of a size insufficient to supply the skin flap (Fig. 5). An unexpected finding was the near absence of macrovenous connections between the venae comitantes and this was verified in all but one of the subsequent in vivo experiments. This was fortuitous, as it provided a model where the only collateral circulation which could bypass the obstruction of the venous valves in the pedicle was the periarterial plexus of fine veins.

Next a pilot study was performed in one dog in which bilateral transverse 7.5 x 5 cm skin flaps were based distally on 9.5 cm pedicles with the microvenous connections divided on one side using the operating microscope. This in vivo experiment provided a much clearer picture of the periarterial venous plexus and its communications with the venae comitantes than the canine cadaver study (Fig. 6A).

Both flaps showed venous congestion and necrosis. However on inspection of the pedicles there was an obvious obstruction at a venous valve in the skeletonised pedicle which was not apparent on the other side. In addition the microvenous plexus was clearly evident on the non skeletonised side, suggesting that it was involved in attempting to provide a collateral venous return. We were uncertain whether flap necrosis was related to the siting of the skin flap over sufficient cutaneous perforating veins or whether the pedicle was too long and hence provided an undue overload on the microvenous pathway, especially as there were no macrovenous connections between the venae comitantes. Therefore we decided to increase the dimensions of the skin flap and to shorten the pedicle on each side, a manoeuvre which would favour the possibility of flap survival on the skeletonised side as it would reduce the number of obstructing valves.

Finally, to eliminate trauma or spasm of the pedicle as a possible cause for flap necrosis, we assessed the survival of two skeletonised island flaps where the skin paddle was the same but where the pedicles were designed proximally on the saphenous systems. The pedicles were 7 cm in length and both flaps, whose flow was antegrade, survived totally without evidence of venous congestion.

Definitive investigation

Ten mongrel dogs were used with weights ranging from 14 to 23 kg. Distally based island flaps were designed bilaterally on the plantar saphenous systems. The skin paddles measured 9 x 7 cm. The pedicle length was 3.5 cm on the non skeletonised side in every case. In 5 dogs the length of the skeletonised pedicle was the same and in 5 dogs it was shortened by more than 50% to a length of 1.5 cm. One skeletonised flap, which survived totally, was excluded subsequently from the series as dissection revealed the absence of any valves.

Under general anaesthesia the skin flap was elevated and the dorsal division of the saphenous arteriovenous system was ligated. On the skeletonised side the plantar division of the saphenous artery was separated from its venae comitantes, dividing the microvenous connections with the operating microscope (Fig. 6B). A vasodilator (verapamil) was applied to the pedicle and spasm was allowed to decay. Then the saphenous artery and vein were ligated on each side proximal to the flap. Immediate congestion of all flaps was seen with cyanotic bleeding from the skin margins. In the flap with no valves, which was excluded from the series, there was no evidence of cyanosis. The flaps were sutured in position and postoperative antibiotics (penicillin and benzatyn) and analgesia (buprenorphin) were administered for 3 days. Flaps were inspected regularly and dressings changed daily.

The animals were killed between the 4th and the 15th day, depending on the condition of the wounds. They were subjected to various postmortem studies including antegrade and retrograde phlebography, histological analysis of the pedicles and microdissection of the veins to locate the site of valves.

Results

In each case cyanosis of the flap persisted for 12 to 24 h and either proceeded to necrosis or gradually cleared between 2 and 5 days. The survival rate of the skin flaps is depicted in Figure 7. Total or partial flap survival was noted in every case where the microvenous connections were left intact in the pedicle. When necrosis occurred in these flaps it was confined to one side and was less than 50% of the area.

On the skeletonised side the result was an all or none phenomenon. Three of 10 flaps survived and 2 of these were cases where the pedicle was shortened to 1.5 cm. In the 7 cases of total flap necrosis, the site of obstruction was obvious. The proximal veins in the pedicle were distended with thrombus, the distal vein was collapsed and histology confirmed the obstructive point to be a valve in each case.

Micro dissection of the veins, to locate valve sites either beyond the obstruction or where partial or total flap survival was observed, was abandoned because of tissue friability of the inflamed pedicle. We resorted therefore to phlebography and histology in these cases.
Figure 6. (Left) In vivo study of the saphenous pedicle in the dog showing the periarterial plexus of veins which drain the walls of the artery (A) and interconnect the venae comitantes (v.c.). (Right) Skeletonised saphenous pedicle with forceps indicating obstruction of flow at a valve.

Figure 7. Postoperative course of distally based reverse flow saphenous flaps in 2 of the dogs. In each case the skeletonised flap is on the left of each picture. In the dog on the left there is total necrosis of the skeletonised flap whereas it has survived completely in the other animal. Although the non-skeletonised flap has survived in each case there is some patchy superficial loss in the dog on the right.
Antegrade phlebography, by injecting the lead oxide mixture into a vein on the dorsum of the hind foot, was disappointing. It simply confirmed the site of obstruction in the case of total flap necrosis and showed flow of contrast to the flap when it survived.

Retrograde phlebography however was most rewarding. The stump of the saphenous vein at the proximal margin of the flap was cannulated and injected with the lead oxide mixture. In every case of flap survival venous valve incompetence was noted extending distal to the base of the pedicle to reach the foot of the dog. Because of this finding an in vitro study was performed before killing the dog. Urografin was injected under fluoroscopic control. It flowed freely to the level of the malleoli, across a short large macroconnection and returned via the saphena parva (sural vein in the human) to the popliteal vein (Fig. 8). It is important to note that the plantar saphenous arteriovenous system courses with the tibial nerve in the dog. Hence valve incompetence occurred over a considerable distance, beyond the field of surgery, where the nerve supply to the veins remained undisturbed.

Haemodynamic studies

Because 3 of the flaps with skeletonised pedicles survived, even though valves were demonstrated intraoperatively and they showed severe postoperative congestion for at least 24 h, we conducted a series of haemodynamic studies which focused on the behaviour of the venous valves. Three different investigations were performed on isolated fresh vein segments. It should be mentioned at this stage that we had measured the venous pressure in the reverse flow saphenous flaps, recorded at the stump of the saphenous vein in both the skeletonised and non skeletonised flaps, which measured 56 cm of water.

Study 1

In 5 experiments a segment of cephalic vein, containing a single valve, was harvested from the forelimb of the dog and submitted to a water column of 275 cm in height. In each case the valve remained competent except for a dribble of no more than a drop every 15 s.

Study 2

In a further 5 experiments multivalvular cephalic vein segments were interposed between 2 columns of water. Proximal (downstream) to the valves the column, which contained methylene blue, was raised to 56 cm to correspond to the venous pressure recorded intraoperatively in the reverse flow flaps. Distally the column of water was raised from 4 to 10 cm to correspond with the physiological venous pressure in the dog.23 24 The system was left for a period of 7 h, the time for irreversible venous infarction to take place in vivo.25 26

In two cases the system remained competent and the dye did not pass beyond the first valve. In two cases the first valve became incompetent but the remainder remained competent. However in the fifth study the first valve became incompetent after one minute and by 5 min all 3 valves had become regurgitant.

Study 3

A final 5 experiments were conducted in which multivalvular cephalic vein segments were set up as in Study 2. This time extrinsic pressure was applied to the vein just proximal to the first valve in the series (Fig. 9). In 3 of the 5 studies gentle compression of the vein with forceps produced incompetence of the valve and in one study the next valve became incompetent when the manoeuvre was repeated. However the manipulation failed to produce incompetence in the other 2 experiments.

Discussion

One of the basic functions of the venous system is to return blood to the heart while at the same time maintaining a constant pressure in the tissues at the venous end of the capillary bed. Physiologically it must compensate for normal pressure variations which result from factors such as changes in posture, kinking and muscle activity. Anatomically the veins are structured to meet these demands by the presence of valves, a rich interconnecting framework of alternative pathways to bypass potential obstructions and the strategic nature of the valves in bypassing potential obstructive phenomena which are present on the venous side of the circulation.
could become regurgitant in situations where the normal contact area of the cusps is small. (B) Microvenous connections allow blood to bypass valve which becomes regurgitant. (C) Distal (upstream) vein segment is collapsed with no fluid allowing cusps to rotate and resist very high pressure in proximal segment of vein. (D) Distortion of valve due to pinching with forceps or other extrinsic pressure which renders cusps incompetent.
placement of numerous avalvular channels which allow for bidirectional flow. It would seem that these avalvular (oscillating) veins are a clever and sophisticated mechanism which provide for the equilibration of flow and pressure between valved veins which in turn protects the capillary bed from regional fluctuations in pressure.

In our previous anatomical studies of the venous drainage of the integument (skin and subcutaneous tissues), the muscles and the nerves we have noted that the venous network is arranged within the tissues as a 3 dimensional system of arcades, usually with avalvular veins situated at their “keystones”. The study of the deep venous system completes the picture and shows a similar arrangement of the venae comitantes as they course between the tissues. The arcades may be long, for example the loops formed between the anterior tibial, posterior tibial and peroneal systems, or short as constituted by the stepladder of veins which interconnect the venae comitantes of the same system. Although the majority of venous valves direct flow proximally towards the heart there are a significant number of veins, as mentioned already, whose valves direct flow distally. It is for this reason that we prefer the term reverse or retrograde flow for those flaps where the venous return is directed against the obstruction of the valves.

What then is the mechanism and the venous pathway by which island reverse flow flaps, such as the radial, ulna or peroneal, have been shown clinically to survive? Undoubtedly with time the valves become regurgitant. However, as shown in our canine experiment, retrograde flow continues beyond the field of surgery until a major a valvular connection is met with a vein which permits antegrade flow (Fig. 8).

In the dog this continued for a distance of more than twice the length of the dissected pedicle. This would suggest that denervation is not essential for valve incompetence for reasons already stated (vide supra). By correlating our results with those of other workers we believe the following factors are involved:

Alternative pathways

Our human cadaver and canine experiments clearly demonstrate avalvular channels at the macroscopic and microscopic level which bypass the valves, either between or along the venae comitantes (Figs 2, 3 and 6).

The large transverse macrovenous connections and longitudinal collaterals provide uninterrupted detours to bypass many of the valves. However, we calculated in the human that they were insufficient to bypass all of the valves until the pedicle length was reduced from 10 cm to 2.5 cm or less (Tables 2 and 3).

On the other hand the microvenous connections do provide an avenue to bypass all of the valves. This is substantiated by our fresh human cadaver studies and the observation that the non skeletonised reverse flow flaps in the dogs survived partially or totally in every case, whereas 70% of the skeletonised flaps showed total necrosis. However the diameters of these vessels are small and their pathways are plexiform as they surround the artery as the venae anteriores. This would suggest that a relatively high pressure and a reasonable period of time would be required for the venous return to negotiate this plexus of small veins, for the valves in the venae comitantes to become regurgitant and for the system to equilibrate. This could explain the cyanotic appearance of the non skeletonised flaps, which lasted for 12 to 24 h, especially as macrovenous connections were non existent in the pedicles and the microvenous pathway was the only one available to bypass the valves.

Valve structure

Although the valves in the extremities were nearly all bivalvular this does not imply that their anatomy is identical (Fig. 10). In 1934 Edwards found that the contact area between cusps varied from valve to valve and ranged from 20% to 50% of the vessel diameter. He concluded that distension of a vein necessary to produce valvular incompetence would therefore vary from valve to valve. This could explain why 3 out of 10 of our skeletonised canine flaps survived and why some or all of the valves in 3 of the 5 vein segments became regurgitant in experiment 2 of our haemodynamic studies.

Another observation which may be relevant to valve behaviour is the presence of smooth muscle in the valve cusps (Fig. 11). Smooth muscle normally responds to physical, chemical or nervous stimuli. It is possible that contraction of the smooth muscle may produce valve incompetence and hence further investigation in this area may be warranted.

Intraluminal factors

Our haemodynamic studies would support Timmons' hypothesis that fluid is required on each side of the valve as a prerequisite for reversal of flow. In experiment 1, the vein distal to the valve was collapsed. This could produce increased efficiency of the valve by allowing additional contact of the valve cusps as shown in Figure 12, thus allowing it to withstand a column of water 275 cm in height. This is supported by the fact that 3 of the multivalvular vein segments in experiment 2 became partially or totally incompetent when a fluid column of 4 to 10 cm of water was introduced into the distal end of the vein while at the same time the column of fluid at the proximal end was reduced to 56 cm.

Extraluminal factors

The third experiment in our haemodynamic study suggests that extrinsic pressure on the valve may produce distortion and valve incompetence (Fig. 12). A rise in interstitial fluid pressure:
(ii) would be expected intermittently with muscle
activity in the limb and

(ii) was evident as oedema in the flap and the
pedicle when flow was reversed against the
venous valves. Whether and how this produces
valve incompetence requires further study. How-
ever, it could explain why the valves became
incompetent in Timmons' experiment, being
due to raised interstitial fluid pressure around
the vein after injection of local anaesthetic,
rather than denervation. This could be resolved
by injecting saline around the vein instead of
local anaesthetic.

Finally a word of caution should be mentioned with
regard to the use of reverse flow free flaps. This has
been attempted, but not without problems. Muller and
co-workers tried this in 1987 and the flap became
deeply cyanosed requiring an additional antegrade
venous anastomosis to salvage the situation. Morrison
(personal communication, 1989) encountered the same
problem and the flap failed as an additional antegrade
anastomosis was not possible. A possible solution to
this problem is a staged transfer of the free flap. The
strategic use of a delay may allow the valves in the
island flap to become regurgitant and the hemo-
dynamics of the system to equilibrate before transfer.

Summary

We feel that the macrovenous and microvenous
pathways coupled with the variable anatomy of the
venous valves are major factors in determining the
survival of reverse flow flaps. However, the effect of
extrinsic pressure on the valves and the role of the
smooth muscle in the valve cusps warrant further
investigation.

Acknowledgements

The authors wish to acknowledge Miss Catherine O'Brien in the
Department of Surgical Research, Royal Melbourne Hospital and
Professor Len Darmon-Smith in the Department of Anatomy,
University of Melbourne for their guidance and help with the
studies. Ms Pierre Smith in the Department of Photography at the
Royal Melbourne Hospital and Stephen Taylor for assistance with
the illustrations and Kay Swetner for typing the manuscript.

We are indebted to The Royal Australian College of Surgeons
for funding the project and to Ethicon, Australia for covering the
cost of the colour illustrations.

References

1. Biener E, Stock W. Total thumb reconstruction: a one-stage
reconstruction using an osteocutaneous forearm flap. Br J
Plast Surg 1983; 36: 52-5.

2. Taylor GI, Cuddy CM, Watterson PA, Cock JR. The venous
territories (venousoms) of the human body: experimental
study and clinical implications. Plast Reconstr Surg 1984; 74:
185-213.

3. Taylor GI, Palmer JH. The vascular territories (venousoms)
of the body: experimental study and clinical implications. Br J

4. Lin SD, Lin CS, Chiu CC. Venous drainage to the reverse

5. Timmons MJ, William Harvey revisited: reverse flow
through the veins of the forearm veins. Lancet 1984; 2: 945
95.

6. Torri S, Namika Y, Mori R. Reverse flow island flap: clinical
report and venous drainage. Plast Reconstr Surg 1985; 75:
690-9.

7. Timmons MJ. The vascular basis of the radial forearm flap.

Mecanisme du retour veineux du haut membre anterieur et des
causes de la perte de substance. Ann Chir Plast Esthet 1988; 33:
25-22.

9. Torri S, Namika Y, Hayashi Y, Wong WY. Reverse flow
perforator island flap for reconstruction of the leg and foot.

10. DeWese JA, Niguidula F. The replacement of the segments
of veins with functional autogenous vein grafts. Surg

11. McLachlin AD, Carroll SE. Masts of Anahaca LA. Valve
replacement in the normalized incompetent superficial fem-

12. Kroener JM, Bernstein EF. Valve competence following
experimental venous valve autotransplantation. Arch Surg

13. Rani S. Venous insufficiency of the lower limb and its

14. Rani S, Fredericks R. Valve reconstruction procedures for
nonvalvular venous insufficiency: rationale, techniques, and
results in 107 procedures with two-year follow-up. J Vasc Surg

15. Tehani SA, Lazar L, Elias SM, Mand histopathology of

Indications and results of vein valve transplant. J Cardiovasc

18. Del Pinel F, Taylor GI. The venous drainage of nerves:
anatomical study and clinical implications. Br J Plast Surg
1986; 83: 511-20.

19. Watterson PA, Taylor GI, Cock JR. The venous territories
of muscles: an anatomical study and clinical implications. Br J

20. Townsend PLG, Taylor GI. Venousized nerve grafts using
composite arterialized neurorrhaphies. Br J Plast Surg

metry: an experimental method for continuous blood flow
measurement using a new island flap model. Plast Reconstr
Surg 1960; 69: 534-44.

22. Ross MJW, Taylor GI. A simplified lead-oxide electrode

23. Kirk RW, Bistner SJ. Pressure venous. In: Kirk RW, Bistner SJ,
ed. Manual of emergencies in veterinary medicine. 2nd ed. Barcen-

Aritx 1971. 976:

25. Harashita T, Sosaka Y, Watanabe S. The relationship between
venous occlusion time in island flaps and flap survival.

26. Su CT, Im MH, Hoopes H. Tissue plasminogen activator in
venous occlusion in island skin flaps. Plast Reconstr Surg

27. Muller GH, Nitschke R, Fayer K, Lumpke G. Arterial and
orthograde anatomic perfusion of the free forearm flap.
Handchirurgie, Mikrochirurgie Plastisch Chirurgie 1987;
19: 113-5.
The Authors

Francisco del Pinal, Plastic Surgeon. Santander, Spain
G. Ian Taylor, Head Consultant Plastic Surgeon. The Royal Melbourne Hospital, Melbourne, Australia

Requests for reprints to Mr G. I. Taylor, 766 Elizabeth Street, Melbourne, 3000 Australia

Accepted 26 January 1993.